Climate impacts on labor and capital:
implications for growth, inequality, and the
social cost of carbon

Marie Young-Brun! and Simon Feindt?*

October 4, 2023

Abstract

Climate change is poised to generate economic damages through many channels, in parti-
cular through shocks to the factors of production. We introduce direct impacts on capital
and productive labor stocks in a global integrated assessment model, resulting in endoge-
nously persistent damages. To capture effects on sub-regional inequality, we calibrate the
joint distribution of capital and labor income and connect it to damages hitting the stock
of capital and productive labor.

We find that the share of labor damages hitting labor and the regressivity of labor
damages are key determinants of outcomes at the bottom of the distribution. When
damages fall on the factors of production rather than on output directly, global inequality
increases. With half the damages hitting the capital stock and half hitting the labor
stock, the social cost of carbon increases by a factor of four, through persistence and
distributional effects.
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1 Introduction

The social cost of carbon captures the welfare loss from emitting an additional ton of
carbon and is used to guide climate policy. Because of the delay between emissions and
climate change, climate policy appears as a primarily inter-generational issue, a trade-
off between the wealth of the present and future generations. Heated debates about
the appropriate discount rate (with Nordhaus 2007 and Stern 2007 as headliners) reflect
the focus on the inter-temporal dimension. Yet, there is also significant spatial and
socioeconomic heterogeneity in climate change impacts. For instance, heatwaves are prone
to hit warmer and more humid regions, and to reduce the productivity and health of heat-
exposed workers (e.g. Kjellstrom, Holmer, and Lemke 2009). By and large, vulnerability
and exposure are determined by "non-climatic factors and multidimensional inequalities
often produced by uneven development processes." (IPCC Working Group II, Field et
al. 2014). Heterogeneity in damages results in impacts of varying durations and interacts
with pre-existing social heterogeneity. A proper evaluation of climate policy requires
taking these discrepancies into account.

This paper studies the impacts of differential climate damages on incomes, inequality,
and the social cost of carbon, using an Integrated Assessment Model (IAM). We disen-
tangle damages on the factors of production and analyze their joint distributional and
persistent effects. We improve the representation of social heterogeneity through decom-
posing economic inequality by income source. To do so, we model the joint distribution
of capital and labor income and evaluate how it interacts with damages hitting the stocks
of capital and labor productivity directly. We investigate the relative importance of these
two impact channels for the distributional outcomes of climate policy, contrasting their
effect on the duration of damages with their direct distributive effect.

Our paper is not the first to use an IAM to explore the distributional consequences
of climate policy. While IAMs have integrated equity weights (Anthoff, Hepburn, and
Tol 2009), the representation of spatial and social heterogeneity is still limited, and in
particular impacts on the poor (Rao et al. 2017). Several significant improvements have
been made recently. Both process-based and cost-benefit TAMs have introduced sub-
regional inequality, either through cross-country inequality (Anthoff and Emmerling 2019;
Taconet, Méjean, and Guivarch 2020; Gazzotti et al. 2021) or through within-region or
within-country distributions (Dennig et al. 2015; Budolfson et al. 2021; Soergel et al. 2021;
Malafry and Brinca 2022). Climate change is found likely to increase inequality (Taconet,
Méjean, and Guivarch 2020; Gazzotti et al. 2021) and to have significant adverse effects
on the poorest (Dennig et al. 2015; Soergel et al. 2021), albeit possibly alleviated by
the redistribution of the proceedings from a carbon tax (Budolfson et al. 2021; Soergel et
al. 2021). Additionally, cost-benefit IAMs show that introducing inequality considerations
can lead to more stringent policy recommendations, captured by an increase in the SCC
(Dennig et al. 2015; Anthoff and Emmerling 2019).

In this paper, we build on the Nested Inequalities Climate Economy (NICE) model
developed by Dennig et al. 2015 based on the RICE! model (Nordhaus 2010). Previous
efforts to capture inequality in TAMs rely on aggregate indices or distributions of net
income or consumption, except for Malafry and Brinca 2022 who use information on the
global wealth Gini index. Our contribution is to introduce a novel source of social hetero-
geneity by modeling and calibrating jointly labor and capital gross income distributions,
as well as consumption distributions.

1. RICE is the Regional Integrated Climate-Economy model.



Representing these sources of inequality is key to better incorporate the growing evi-
dence on the distributional impacts of climate change, especially on the poor (Hallegatte
and Rozenberg 2017; Hsiang, Oliva, and Walker 2019). More destitute households tend
to have a higher reliance on labor earnings with greater exposure to unstable weather
conditions (Park et al. 2018; Hallegatte et al. 2020; Parsons et al. 2021), and on more
vulnerable asset portfolios (Hallegatte et al. 2020). This makes them more prone to suffer
from consequential income losses and to fall into poverty traps (Carter et al. 2007). The
high concentration of wealth and assets at the top of the distribution also implies that
the poorest often have little leeway to smooth consumption in case of a shock and that
they are more dependent upon wages. We incorporate this dependence through income
composition inequalities—how the composition of income in two sources, such as capital
and labor income, varies across the income distribution (Ranaldi 2021)—and couple it to
damages on the factors of production.

To model channel-specific damages, we build upon a second strand of IAM literature,
which introduces climate shocks to different channels at the aggregate level and studies
their subsequent persistence and growth effects. Kopp et al. 2012; Dietz and Stern 2015
and Moore and Diaz 2015 investigate the role of impacts on the capital stock or on
total factor productivity. Estrada, Tol, and Gay-Garcia 2015 analyze implicit persistence
in TAMs and show that implied impact durations are not consistent with the available
evidence on general output shocks. Piontek et al. 2019 study the impact and half-life
of damages on a large variety of input channels and discuss possible implications for the
labor share. Kikstra et al. 2021 introduce empirically estimated partial damage persistence
through direct impacts on GDP growth and find strong effects on future GDP per capita
and the social cost of carbon. We build on the insights of this strand of literature and
adopt labor and capital damages based on Kopp et al. 2012 and Piontek et al. 2019s
formulations.

We thereby generate an improved representation of heterogeneous income and dam-
ages in an TAM. We find that including labor and capital damages leads to persistent
damages and growth effects, with heterogeneity across countries. Our results show that
the allocation of the burden of channel-specific damages across the income distribution
has strong impacts on inequality and on the livelihoods of the future poor. With slightly
regressive income and labor damages, having half of the damages fall on the labor channel
and half on the capital channel results in an increase in the global Gini, compared to the
baseline with only direct output damages, of 5% in 2050 and 15% in 2100. We also show
that labor damages and their distribution have a stronger negative impact than capital
damages on income share and consumption at the bottom of the distribution. The growth
and distributional effects of factor-specific damages result in an increased social cost of
carbon (SCC). Compared to a baseline in which all damages fall directly on output, hav-
ing half of the damages fall on capital and half on labor increases the SCC 3.4 times if
damages are proportional to income, and at least 4 times if the burden fall disproportion-
ally on the poorest households. We further disentangle the persistence and distributional
channels of impacts on the SCC and explore the role of normative parameters.

The rest of this paper is structured as follows. Section 2 details the model and the cal-
ibration of factor income and consumption inequalities. In section 3 we present aggregate
effects from the introduction of capital and labor damages, before turning to distribu-
tional outcomes and the impact on the SCC. We discuss our results in section section 4
and conclude in section 4.



2 Methods

In this section, we present the key components of the Integrated Assessment Model we use.
We start by introducing the macroeconomic framework, a growth model & la Solow-Swan.
We then turn to the breakdown of aggregate income into capital and labor components
and detail the distribution of factor-income within regions. Next, we describe our damage
specification, including the newly implemented factor-specific damages, as well as their
distribution. Lastly, we detail the analytical formulation for the social cost of carbon

(SCC).

2.1 Regional output and consumption

As in RICE (Nordhaus 2014), gross output at time ¢ in region r is modelled through a
Cobb-Douglas production function occurs at the regional level

Y§ = AL KoL (2.1.1)

with A exogenous total factor productivity, K the stock of capital, L labor and a €
[0, 1] output elasticity of capital. Capital stock and productive labor are shared at the
quintile level, and aggregated for production and accumulation at the regional level. Initial
capital and output levels are calibrated using Penn World Table data. The trajectory
of total factor productivity is then calibrated to match the "Middle of the road" Shared
Socioeconomic Pathways (SSP) scenario. Resulting baseline output per capita and growth
are shown in Figure A3.

Damages and abatement costs are subtracted from gross output, resulting in net out-
put
Y =(1—-Ay)(1—-DSYY (2.1.2)

rt
with D% damages as a share of gross output and A,; abatement costs as a share of net-
of-damages output. In the rest of the paper, we will focus on inequality outcomes and
the SCC along a "Business-as-usual" path, which implies that A,; = 0, Vr. Net output
is either consumed or invested in capital stock with a fixed savings rate s.> Capital
accumulates at the regional level, with a yearly depreciation rate of §

K1 = (1= 0)K,; + sV} (2.1.3)
Regional aggregate consumption is then given by
Cy=(1—-5YY. (2.1.4)

Population P,; and labor L,; are equal in the first period but can differ when shocks to
the labor stock occur. Population grows according to UN population projections (United
Nations 2019).

2.2 Factor income distribution

Next, we relate total net output to the distribution of income across households, split-
ting the population of each region into quintiles. To avoid the pitfalls of macro-micro
discrepancies that arise when coupling aggregate outcomes to household level evidence,

2. We discuss this assumption in Section 4.



we build on the concepts and methods used in the construction of Distributional National
Accounts (DINA)? (Alvaredo et al. 2016; Piketty, Saez, and Zucman 2017).

We equate net output to pretax regional income. In turn, net income is split between
a capital income component Y* and labor income component Y. With a Cobb-Douglas
production function, output elasticity « also captures factor shares:

Vi o= oY) (2.2.1)
Vi = (1-a)Yy (2.2.2)

Factor income in each region is shared across quintiles. The distribution of factor income
reflects an implicit distribution of wealth, returns and wages. Denoting ygt (resp. yTth)
capital (labor) income of quintile ¢ and shz;? (resp. shz;i) quintile ¢’s share in capital

income (resp. labor income), pretax income of quintile ¢ writes

K L
Yrqt = yff]t + yfqt = Shzfqt Yrj;(t + Shzfqt Yr{,’t (2.2.3)
- (ash{qf +(1—a)sht) ) vy (2.2.4)
It follows that quintile ¢’s share in pretax regional income is
Yrqt K L
shz/qt = Y_KQ = ozshzfqt + (1 - oz)sh}n/qt (2.2.5)
rq

We calibrate capital income distribution using wealth distribution data from the Credit
Suisse Global Wealth databooks (Davies, Lluberas, and Shorrocks 2017). The Gini index
is converted into wealth quintiles with log-normal distributions. We assume that capital
income and wealth are identically distributed. Given the evidence for higher returns at the
top of the wealth distribution (Benhabib and Bisin 2018; Garbinti, Goupille-Lebret, and
Piketty 2021), we expect our calibration is a lower bound of capital income inequality. We
combine the resulting capital income distribution with data on labor income distribution
at the decile level from the International Labour Organization (Gomis 2019). Under the
assumptions of equal ranking between labor and capital income distribution and given the
fixed aggregate labor share (1 — a), we retrieve total income distributions for the twelve
regions in RICE. We take this approach rather than relying on available factor income
micro-data because it is likely that a significant proportion of national income is missing
from micro sources (see e.g. Flores 2021). Figure Al displays the input data for labor
and capital income distribution.

To account for the future evolution of the income distribution, we follow the inequality
projection of the "Middle of the road" SSP scenario, SSP2 (Rao et al. 2019). In this
scenario, historical trends are continued. Income inequality is assumed to persist or
slowly improve, and development trends remain heterogeneous (Fricko et al. 2017).

These trends describe the evolution of total income inequality, so we use the Gini
decomposition method introduced by Rao 1969 and Kakwani 1977 to project inequality
by income type. With equal ranking between income components and total income, Gini
index for total income Gy is given by the sum of the Gini coefficients for each income
component (G;) weighted with the share of this component in total income (sh}). With
total income being the sum of capital and labor income and the factor share being equal

3. In particular, the DINA methodolody aims at reconciling inequality measurement and national
accounting (Alvaredo et al. 2016).



to the respective output elasticity (as in equation 2.2.1 and 2.2.2), the change in the total
income Gini is given by

AGY B A(Z?:l Shz/Gz) . OéAGK + (1 — Oé)AGL
G - Gy 0 (2:2.6)

The contribution of an income component to the change in the total income Gini is

shZYAGi v
AGy Gy (@) sh; AG;
sh; 7Y = =

~ dlog(Gy)
gdt - AGy

(2.2.7)

We decompose changes of the total income Gini by assuming that shiAGY is equal to its
factor income share sh). The absolute change of an income channel Gini is then the
absolute change of the total income Gini (AG; = AGy). The resulting evolution of
capital and labor income shares in each region are depicted in Figure A2. Consistent
with evidence on factor income distribution, our calibration features a more unequal
distribution of capital income than labor income in most regions.

Income is more unequally distributed than consumption (e.g. World Bank 2016) be-
cause of consumption smoothing, redistribution and consumption of public goods, etc. To
capture this expected discrepancy, we estimate below an elasticity of consumption share
with respect to income share for each region from our calibrated income shares and World
Income Inequality Database consumption shares for 2019.

2.3 Aggregate damages

Damages from climate change on gross output result from a temperature increase above
the pre-industrial level. We model the global temperature response with the Finite Am-
plitude Impulse Response model (FalR, v2.0.0) developed by Leach et al. 2021. The FalR
model is a simplified climate model estimating radiative forcing and temperature increase
from factors such as greenhouse gas emissions (e.g. COq, CHy), land use, and others. The
main advantage of the FalR model compared to the RICE climate model previously used
in the NICE model is the state dependency of the model. The FalR model represents
state dependency through feedback loops in the carbon cycle. Feedback loop implemen-
tation is necessary to obtain radiative forcing estimates close to those of more complex
Earth system models. We use the Julia implementation from Errickson et al. 2022 based
on the default model by Leach et al. 2021. As in Errickson et al. 2022, we assume that
non-CO, emissions follow the SSP2-45 scenario. Recent assessments of the SCC deploy
the FalR model to estimate the global temperature increase (e.g. Hénsel et al. 2020; Rode
et al. 2021; Rennert et al. 2022; Barrage and Nordhaus 2023).

Damages from the resulting global temperature increase are assumed to follow a
quadratic function with temperature

Dyt = 1Ty — Tross—2005) + Var (Tt — Thos6—2005) (2.3.1)

with 1, and s, the region-specific damage parameters, T; the temperature anomaly
with respect to pre-industrial levels, and Tlgss_2005 the average temperature anomaly of
the period 1986 to 2005 to pre-industrial levels. We calibrate 11, and s, based on
the regional COACCH damage functions and employ the results from the 50th quantile
regression of a quadratic fit with optimal adaptation to sea level rise for the REMIND



model (Van Der Wijst et al. 2023). Due to differences in the regional aggregation between
the REMIND and the NICE model, we map the regional damage estimates to each country
within a REMIND region. We then estimate new regional coefficients for the NICE regions
based on a GDP-weighted regression.

2.4 Capital and labor damages

In Nordhaus 2014 and Dennig et al. 2015, damages fall directly on aggregate output.
Although this formulation is meant to capture the overall impact of the myriad of ways
in which climate change manifests, it misses some of the endogenous economic responses.
In the RICE and the NICE model, production is modeled with a Cobb-Douglas function
taking labor and capital inputs. We introduce impacts hitting directly these factors of
production. We then use a National Distributional Accounts type framework to relate
the aggregate damages to their impacts on earnings.

First, we consider that the productivity of labor and the number of hours worked are
adversely affected by climate change. Increases in temperatures and heat stress can lead
to a reduction in productivity in exposed sectors and an overall increase in absenteeism,
resulting in decreased output (Acevedo et al. 2020; Heal and Park 2020; Dasgupta et
al. 2021; Parsons et al. 2021; Somanathan et al. 2021). Impacts on labor productivity can
be long-lasting, for instance through reductions in educational outcomes (Park, Behrer,
and Goodman 2021) and health (Hallegatte et al. 2020).

Second, climate change also impacts the capital stock. The increased frequency and
magnitude of extreme events, such as, for instance cyclones, floods, landslides, or fires,
leads to more damages on physical capital such as plants or infrastructure (IPCC 2023).
Productive assets owned by households such as plantations, livestock, or land can also be
damaged by extreme events (e.g. Carter et al. 2007) or by slow onset changes such as sea
level rise (Islam and Winkel 2017).

We capture the aggregate effect of damages on labor and capital by splitting up output
damages. Following Kopp et al. 2012 and Piontek et al. 2019, we model capital, labor,
and output damages to ensure the overall impact on output at time ¢ matches the output
damages in the absence of factor-specific damages. We add damages to productive labor,
leaving population unchanged, to the formulation used in Kopp et al. 2012. In this way,
output net of damages

(1—DS)A LK™ (2.4.1)

can be rewritten as
11—« o
(1— DSV A,, ((1 - Dg)%Lt) ((1 - Dg)%"mt) (2.4.2)

with fy, fx, and fr the share of damages falling respectively on output, capital, and
labor, and fy + f + fx = 1. The direct impact on output is captured by (1 — D)"Y,
and post-damage stocks of capital and productive labor write

KY = (1-D%*K, (2.4.3)
LN = (1- DS, (2.4.4)

Damages on capital and labor stocks result in persistent impacts through two chan-
nels. First, stock damages produce a direct impact, as output remains diminished while
the productive stocks have not recovered their counterfactual level. Full persistence of



labor shocks would be an extreme assumption. Instead, we control the dissipative dy-
namic of the shocks through a persistence parameter A\, between 0 (full and instantaneous
dissipation of the shock) and 1 (no dissipation of the shock). This specification is close to
that of Piontek et al. 2019 for a one-time shock and exogenous labor productivity growth,
adapted to our specification with repeated shocks. Given that labor grows at the same
rate as population, we get:

P,
Liy=(1—=\Py+ AP—”LffH. (2.4.5)

rit—1

When A = 0, all labor damages from the previous period dissipate, and labor is equal to
population in the region. When A = 1, the shock fully persists and the rate of population
increase is applied to the region’s net-of-damage labor from the previous period.

The persistence of capital damages depends on the rate of depreciation, which deter-
mines how fast new investment replaces the capital stock. With a depreciation rate of
100% over a decade, capital damages have no direct persistent impact in a model with
ten-year time-steps, as the next period capital stock is entirely replaced by investment. In
a neo-classical growth framework, labor damages tend to be more persistent than capital
damages (Piontek et al. 2019).

Second, lower output begets lower investment in capital stock which causes an indirect
persistent impact. Indirect persistence increases with the depreciation rate—contrary to
direct persistence—and with the output elasticity of capital (Estrada, Tol, and Gay-Garcia
2015). This indirect impact occurs even in the absence of any channel-specific damage.
It plays a role in compounding the direct output impacts, albeit limited.

We recover persistent damages as a share of gross output, DS;P, by comparing gross
output and a counterfactual with no channel-specific impacts, or "unpersistent" output.
This counterfactual, Yf’cf , corresponds to gross output in the case where all damages fall
directly on output, all other parameters in the model being equal, i.e. YT?l Fy=1- In turn,
persistent damage is
yier—vg

v
This metric of persistent damages captures direct persistence and indirect persistence from
capital and labor damages, but not persistence from damages that fall directly on output.
As a result, this metric captures the additional persistence resulting from channel-specific
damages.

D&t = (2.4.6)

2.5 Distribution of damages

Damages are allocated between labor productivity, capital stock, and direct output im-
pacts according to damages shares f;, i € {L, K,Y}. These damages are then distributed
according to labor income, capital income, and total income respectively, with an income
elasticity parameter ¢ reflecting how proportional damages are with respect to the specific
income distribution. &; equivalently captures the income elasticity of damages in absolute
terms, and the elasticity between the quintile’s share in income of type 1, sh}f and the
quintile’s share in damages of type 1, shqu, ie.

_ (9lndf1 B 8lnsh§)i
~ Olny.  dlnsh)’

(2.5.1)

i



with ¢ € {L, K, Y} and dfl the damages of type ¢ hitting quintile ¢. An income elasticity
¢ of 1 implies that damages fall proportionally to income shares. £ = 0 means that each
quintile bears a fifth of the damages, i.e. that damages are independent of the income
share.

In turn, a quintile’s share in total damages, adding up damages from labor, capital,
and directly on output, is

shy = ) fishl (2.5.2)
ie{Y,K,L}
D L i (2.5.3)
= 2 Y J.
eiviony g (sh)

The progressivity (or regressivity) of damages overall will stem from the pre-damage
income distributions, the composition of damages across channels (f;, fx, fy) and the
income elasticity of each damage type.

The literature on the distribution of climate impacts cannot provide a central estimate
of the income elasticities of labor and capital damages, but it can help outline a plausible
range of values. Disadvantaged groups are found to suffer disproportionately from climate
change because of i) higher exposure to climate hazards, ii) higher vulnerability, and iii)
lower ability to cope with adverse impacts (Hallegatte and Rozenberg 2017; Islam and
Winkel 2017).

Evidence for damage disproportionality indicates that the income elasticity of climate
damages is likely below 1, but a more detailed description of the distribution of damages
is needed to pinpoint its value more precisely. In particular, whether the poorest bear a
larger damage share in absolute value is key to restricting the range of plausible values
for the income elasticities of damages.

The poorest, in particular in hot countries, are more likely to work in sectors with
higher exposure to heat stress (Park et al. 2018) and in which the hours worked and
productivity losses are largest (Graff Zivin and Neidell 2014). They are also less likely
to have access to a variety of income sources, making them more vulnerable to natural
disasters (Hallegatte et al. 2020). However, significant losses from the perspective of the
poorest households do not necessarlly translate into the largest share at the national and
regional scale, because the income of the poor makes up only a small fraction of aggregate
income (Hallegatte et al. 2020). For example, a case study of heat stress-related income
losses in Australia showed that the most expensive productivity loss in absolute value
corresponded to the higher-paid occupations, although these were not the most exposed
(Zander et al. 2015). Tt is therefore likely that the income elasticity of labor damages is
significantly larger than zero.

Turning to capital (or asset) damages, most of the available evidence concerns physical
capital impacts, mainly through studies of natural disasters. To the best of our knowl-
edge, very little is known about how climate change will impact financial assets. Natural
disasters are more prone to strike the assets of the poor because of higher exposure and
vulnerability. Indeed, asset composition differs across the wealth distribution: the port-
folio of the poorer tends to be less diversified and more vulnerable (e.g. housing and
livestock rather than financial assets) (Hallegatte et al. 2020). Insurance take-up also
tends to be lower (e.g., Kousky 2019). In the rest of the paper, we use income elasticities
between 0.5 and 1.

Finally, we recover the share of quintile ¢ in net regional income, by combining income
and damages distributions. We focus on a "Business-as-Usual" case, in which there is no



abatement. The share of quintile ¢ in net regional income then writes

shiy, = i’/j’vt (2.5.4)
rt
(Sh}’/qt - Shr%the) v

(1= DGV (259
Put differently, the net income share captures the gap between equally distributed income
and damages, and their actual joint distribution.

In turn, re-scaling the net income share sh,},/q]tV with the income-to-consumption elas-
ticity [, yields the share of quintile ¢ in regional consumption

N Br
()

Br’
SYEH
We estimate the elasticity 3, based on a log-log model with income shares as calculated
in eq. (2.2.5) and country-level consumption shares from the latest release of the World
Income Inequality Database (WIID) (UNU-WIDER 2022) aggregated to regional quin-
tiles.* Climate damages thus impact final consumption in two ways: by reducing the level

of aggregate regional consumption, and by affecting the share of each quintile in regional
consumption.

¢ _
Shrqt -

(2.5.6)

2.6 The social cost of carbon

The social cost of carbon (SCC) represents the present loss of consumption that is as
costly as the discounted stream of future consumption losses due to the emission of an
additional ton of carbon. We do not compute the SCC along the model’s optimal emissions
pathway, but instead along an emissions trajectory calibrated on the "Middle of the
road" Shared Socio-economic Pathway (SSP2). SSP2 continues historical trends in socio-
economic variables. This has two consequences. First, it allows us to compare values
of the SCC on the same baseline emissions pathway when varying the main parameters
of our model. This would not be possible with an emissions trajectory achieved through
optimization, because a change in parameters would also lead to a change in the emissions
pathways. Second, the SCC values computed along SSP2 trajectories will not be equal
to the optimal carbon price®. We calibrate the model using a descriptive approach and
perform a normative evaluation of damages on labor and capital.

To evaluate consumption losses, we use an utilitarian social welfare function (SWF)
in which welfare is derived from consumption. The SWF features two key normative
parameters: 7) captures aversion to inequality (inter- and intra-generational) and p is the
pure rate of time preference.

We first focus on welfare assuming a global representative consumer. With ¢; = %
world consumption per capita at time ¢, the discounted utilitarian global SWF is
T 1—
P, c "
we=>3" L (2.6.1)

—~ (L+p)(1—mn)

4. We use consumption data from 2019 if available, otherwise we use data from the closest year to
2019. In case no consumption data is available, we take net income data (41 out of 190 countries) or
income data labelled "net/gross" (12 countries).

5. The SCC is equal to the optimal carbon price if marginal damages are measured along the optimal
emissions trajectory.




The global SCC is then the ratio between the marginal impact of one additional ton of
carbon on global welfare and the welfare cost of losing one unit of global consumption in
the first period (Nordhaus 20141),

Zt_j Act 8WG

WE ’
0Co

SCCq = (2.6.2)

with AC; the change in global consumption due to an additional ton of carbon. The
global SCC uses aggregate consumption at the world level, and thus cannot reflect inter-
and sub-regional impacts of climate change.

As our analysis accounts for the distribution of impacts across regions and quintiles,
we turn to a welfare function with regional quintile consumption to compute the SCC.
We use a welfare function with disentangled inter-temporal (1) and intra-temporal (7)
inequality aversion (Anthoff and Emmerling 2019). With ¢,y = P:/% consumption per
capita for quintile ¢ in region r, the social welfare function is

T

Z 1+pt1_ <ZZ o ;ﬂ) (2.6.3)

t=0

If not stated otherwise, we assume as in Dennig et al. 2015 that inter- and intra-temporal
inequality are equal®, i.e. n = v, which results in the following social welfare function

1777

We = ZZZ i f; - 17jtn (2.6.4)

The SCC translates the welfare effect of a marginal ton of emissions into an equivalent
change in present consumption, in monetary units. This change in consumption represents
the present welfare benefit from the marginal emission, or equivalently the present welfare
cost of mitigating the additional unit of emission. When consumption is aggregated at the
global level with a unique representative agent, the normalization can be based on global
average consumption. However, when consumption is disaggregated, a choice becomes
necessary over the entity whose present marginal welfare will serve as normalization.

Picking a specific region for this normalization amounts to considering that the costs
of mitigation are borne only by that region. In addition, choosing a richer region mechani-
cally results in a higher SCC (e.g., Adler et al. 2017; Anthoff and Emmerling 2019) because
foregoing present consumption has a lower welfare cost for a richer region. Consistent with
our normative approach and the assumption of a globally impartial decision-maker, we
assume instead that the cost of mitigation is shared globally across all quintiles. We
expand the concept of a “World-fair normalization” (Adler et al. 2017) to quintile level
consumption. The present cost of a marginal emission reduction is borne by regions in
proportion to their share in global consumption, and by quintiles within regions in pro-
portion to their share in regional consumption weighted by the consumption-elasticity
of mitigation costs &,. The quintile level social cost of carbon with quintile world-fair
normalization then writes

T Q
Zt:o Zr Zq ACthch”q
OWe
Zr Zq T4 9Corq

6. In the results section we test the sensitivity of the SCC to changes in the inter- and intra-temporal
inequality aversion as in Anthoff and Emmerling 2019. We assume that within- and between-region
inequality aversion is equal.

SCCqy = (2.6.5)
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with 7,, the weight of quintile ¢ in region r such that

with £, the consumption-elasticity of mitigation costs. Under the assumption that current
mitigation efforts would be distributed proportionally to consumption ({4, = 1), the nor-
malization weight of each quintile reduces to the share of quintile consumption in world

consumption, m,., = Cogq

3 Results

We turn to the main outcomes of our model along a business-as-usual scenario. When
not stated otherwise, we use a decadal depreciation § of 70%. ¢ = 0.7 is equivalent to
compounding approximately a yearly depreciation of 10%, which is the depreciation rate
used in RICE. We also set the labor damage persistence to A = 0.5 per year, meaning
that half of the damages hitting labor do not dissipate from one year to the next.

We first quantify the effect of capital and labor damages on overall regional damages
and the persistence of output losses. Second, we report the distributional outcomes of
channel-specific impacts and income elasticities of damages. We then assess how the
stronger persistence of damages hitting labor productivity and capital damages and their
distributive outcomes affect the social cost of carbon (SCC) and test the sensitivity of the
SCC to the key parameters.

3.1 Persistence and growth effects of labor and capital damages

We start by analyzing the effect of capital and labor damages on total damages, the
persistence of damages, and output growth. To this end, we allocate up to 100% of
recurring and instantaneous damages on the capital and labor stocks. We define our
counterfactual "unpersistent" case to be when there are no damages on either capital or
labor but only direct output losses, i.e. fy = 1, or equivalently f;, = fx = 0. In the rest
of this section, we report total and persistent” damages as a share of gross output in this
counterfactual case, which we call unpersistent gross output.

Table 1 displays the ranges of damages as a share of unpersistent gross output for
the twelve regions and different allocations of damages across the output, capital, and
labor channels. In the unpersistent case (fy = 1), regional damages as a share of gross
output fall in the 3.2 — 13.8% range. The most affected region is India, followed by Africa
and the Other Asia region (Figure A4a).® Next, we compare the effect of assigning 10%
of all damages to the capital versus the labor channel. As shown in Table 1, for 10%
channel-specific damages, capital damages have a stronger impact than labor damages on
regional damage shares.

We also find that the increase in overall output loss from labor and capital damages
occurs proportionally to baseline damages in each region. Figure A4a shows total damages
as a share of gross unpersistent output differentiated by region. By 2100, channel-specific

7. The exact definition of persistent damages can be found in subsection 2.4.
8. The regional heterogeneity in the unpersistent case follows from the calibration to the COACCH
regional damage functions.
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Table 1: Range of regional damages as a share of regional unpersistent gross output, for
different channel-specific impacts, 2100, 6 = 0.7, A = 0.5.

fi\fr 0O 0.1 0.5 0.7

0 3.2-13.8% 3.6-15.4 %

0.1 5.7-22.4% 6-23.8%

0.3 11.9-39.5%
0.5 14.6-43.4%

damages scale up the baseline damages but do not affect the ordering of regions according
to the share of output lost.

Furthermore, the effect of channel-specific damages on total damages and on the per-
sistence of damages depends on the depreciation rate of capital 6 and on the persistence
of labor damages A. Figure A5 displays the percentage share of total damages in gross
unpersistent output (panel a) and the percentage share of persistent damages in total
damages (panel b), for a range of decadal depreciation and persistence of labor damage
values. Reducing the decadal depreciation rate §, or increasing the rate of persistence of
labor damages A, increases the total damage share in every region (Figure Aba), as well as
the share of persistent damages in total damages (Figure A5b). A decadal capital depre-
ciation rate of 0.8 (approximately equivalent to a compounded yearly depreciation rate of
0.15) and a labor damage persistence rate of 0.3 result in a share of persistent damages
in total damages of 72-80% between 2040 and 2100, whereas a decadal depreciation of 0.6
(approximately equivalent to 0.09 yearly) and a labor damage persistence of 0.7 result in
a share of persistent damages of 82-90% between 2040 and 2100.

Compared to the results in Piontek et al. 2019, our findings differ in two main as-
pects. First, our overall damage levels are larger. This difference can be explained by
the use of distinct damage functions. Piontek et al. 2019 use the standard DICE func-
tion (Nordhaus 2011), whereas we apply the regional COACCH damage function (Van
Der Wijst et al. 2023). Second, contrary to what we find, Piontek et al. 2019 show labor
and productivity damages have a stronger impact than capital damages on output losses.
This is likely due to differences in savings rate and production function, in the capital
depreciation rate, the (implicit or explicit) persistence level of shocks to productive labor,
and to compounding effects of different time steps.

Next, we find that channel-specific damages result in both level and growth effects
on per capita output. Figure la shows the difference in regional output per capita with
respect to the baseline case with damages falling only on output, and Figure 1b shows
the difference in annualized growth of per capita output.

First, a damage composition with 10% on the capital channel and 10% on the labor
channel results in continuously increasing level effects, with a reduction in regional output
per capita between 3 and 12% in 2100. India, Africa, and Other Asia are the most
affected regions, with reductions greater than 9%.° In terms of growth effect, this case
with fr = 0.1 and fx = 0.1 results in long-term reductions in annualized growth of less
than 0.25 percentage points.

Second, we assign 100% of damages to the factor-specific channels, keeping the damage

9. LatAm stands for Latin America, MidEast for Middle East, OHI for Other High Income countries,
and OthAsia for Other Asia.
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Figure 1:
case with damages falling on output only (f, = fx =0), § = 0.7 and A = 0.5.
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composition proportional to the production factor shares. This results in a level effect
of over 9% in all the regions, with India, Africa, and Other Asia suffering an output per
capita loss of over 24%. Growth effects are larger in the first periods and converge during
the century to reductions in annualized regional growth rates approximately between 0.1
and 0.3 percentage points. The regional variation in level and growth effects reflects
regional heterogeneity in overall climate change damages, with India, Africa, and Other
Asia being more affected by climate damages (Figure Ada).

Moore and Diaz 2015 introduce growth effects in the DICE model by calibrating
reductions on total factor productivity growth and capital depreciation with empirical
estimates of temperature impacts on GDP growth. In comparison to their findings, our
scenario with 100% of damages falling on capital and labor channels in proportion to factor
shares results in lower level and growth effects. For poor regions, they find a reduction of
40% in per capita output in 2100, and a reduction in the average annual growth rate of
0.8 percentage points. For richer regions, our results are closer, as they also find a level
effect of around 10% and a growth rate reduction of 0.1 percentage points.

Kikstra et al. 2021 implement growth effects through explicit damage persistence cal-
ibrated to match empirical evidence. With the central estimate of damage persistence of
50%, they also obtain heterogeneous GDP growth reductions across regions. In Africa,
they find larger reductions (0.5 to 1 percentage points in the 21st century) than we do.
In the EU, they find an increase of around 0.1 percentage points compared to a scenario
with zero persistence. Our model does not allow for a growth increase caused by climate
change damages, but our estimate for the growth reduction in the EU is the one closest
to zero. Our results coincide with the results from Kikstra et al. 2021 in terms of a large
regional heterogeneity, with poorer regions more strongly affected.
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3.2 Distributional impacts of labor and capital damages

We now explore how channel-specific impacts affect inequality and income levels of the
poorest within regions. We analyze the sub-regional distributional impacts of damages
on labor and capital, as well as the role of the labor income elasticity of labor damages,
&, and capital income elasticity of capital stock damages, {x. We first focus on the
damage distribution with the Suits index and then turn to impacts on global and regional
inequality as well as the effect on the poorest within regions.

3.2.1 Suits index of progressivity of climate damages

The distribution of damages overall can be synthesized by applying the Suits index (Suits
1977) to the damage shares (2.5.2)

5 i i—1
1 1
szl—ﬁ [25 (Zshf—l—Zshf) shf] : (3.2.1)

=1 q=0 q=0

The Suits index is based on the Lorenz curve for damage shares. Negative values indicate
a regressive distribution of damages, with -1 being the most regressive case (the poorest
quintile bears the entire damage loss), and positive values indicate a progressive distribu-
tion, with 1 being the most progressive case (the richest quintile bears the entire damage
loss). A value of zero reflects damages with the same distribution as total income. There
are three determinants of the regressivity of climate damages in our approach: a) the
composition of damages between capital and labor damages, b) the income elasticities of
capital and labor damages, and c¢) the pre-damage income inequality.

Figure 2 displays the impact of the composition of damages on the Suits index in 2020,
with income elasticities of 1. When 70% of damages fall on labor and 30% on capital, as
in the central panel of Figure 2, damages are exactly proportional to income (Suits index
equal to zero). This damage distribution reflects that aggregate income is distributed
according to factor shares, with (1 — a) = 0.7 the labor share. When the composition of
damages shifts towards a larger capital share, damages are distributed more progressively,
and the Suits index increases. Since capital income is more unequally distributed than
labor income, shifting damages toward capital with an income elasticity of one shifts the
burden of climate damages towards the richer quintiles. The opposite is true when the
composition of damages shifts towards a larger labor share. This pattern occurs in every
region except in Africa. For this region, our calibration resulted in very high levels of both
capital and labor Ginis, and, contrary to other regions, in a labor income Gini slightly
higher than the capital income Gini.

Figure 3 displays the effect of the income elasticities of labor and capital damages (£,
and k), for labor and capital damages shares fixed and proportional to the labor and
capital share in income (f;, = 0.7 and fx = 0.3). Damages are proportional to total
income when both elasticities are equal to one. A decrease of &, or £k from 1 towards
0.5 results in more regressive damages in all regions. Finally, Figure 3 shows, for labor
and capital damage shares proportional to the aggregate income shares, that the income
elasticity of labor damages &, has a stronger regressive effect than the income elasticity of
capital damages £x. The more pronounced impact on the Suits index reflects that labor
income makes up a larger share of the income of poorer households.
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Figure 2: Suits index of the damage distribution for different levels of capital and labor
damage shares, 2020.
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Figure 3: Suits index of the damage distribution for different levels of capital and labor
income elasticities of damages, 2020.
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3.2.2 Global and regional inequality

We start by computing the global Gini index by pooling together all quintile consumption
at the world level. Figure A6 shows the global Gini index in the unpersistent case (fy = 1).
In the absence of any channel-specific impact, the Gini index decreases from around 56%
in 2020 to 40% in 2100, i.e. a decrease of 16 percentage points (p.p.). This reduction in the
baseline global Gini is due to differential growth between regions, with partial convergence,
and to changes in the regional inequality driven by the SSP scenario projections.

Figure 4 displays the change in global consumption Gini for different combinations of
channel-specific damages and income elasticities of damages, compared to the unpersistent
case. First, half of total damages are assigned to the channel-specific damages (fy = 0.5).
For damages proportional to income in both channels ({;, = £x = 1), the global Gini
increases by around 2.5% in 2100. Having damages fall disproportionately on the bottom
of the distribution raises the global Gini with respect to the case with damages on output.
By 2100, the global Gini index increases by 4% for income elasticities of capital and labor
damages of 0.75, and by 7.5% for income elasticities of capital and labor damages of 0.5.

Figure 4: Difference in global consumption Gini index (%) for different levels of channel-
specific damages and elasticities, with 6 = 0.7, A = 0.5.
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Second, we assign 100% of total damages to the channel-specific damages (fy = 0). As
a result, the global Gini increases compared to the unpersistent case, by around 3.5% for
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proportional damages and up to around 15% for disproportionate damages with &, = 0.5
and {x = 0.5, in 2100 (Figure 4). Hence, for damages falling fully on the labor and capital
channels, and regressive damages with channel-specific income elasticities between 1 and
0.5, around a fifth to a third of the baseline decrease in the global Gini is offset.

In addition, we explore the role of damage composition across the labor and the capital
channels by assigning the damages in two ways, symmetric (e.g. fx = fr = 0.5 for a
total of 100% of channel-specific damages) or proportional to factor shares (e.g. fx = 0.3
and f;, = 0.7 for a total of 100% of channel-specific damages). Figure 4 shows that the
impact on the difference in global Gini to the baseline is small when the labor and capital
income elasticities of damages are equal, and up to 4 p.p. when £, = 0.5 and & = 1.

Next, we focus on the regional Gini index. Figure A7 depicts the regional Gini index
with unpersistent damages based on quintile consumption (fy = 1) following the calibra-
tion to the SSP2 scenario. India experiences a large increase in the regional Gini index
and becomes the most unequal region at the end of the century (Gini around 35% in 2020
and 50% in 2100). Regions with less pronounced increases or relatively stable Gini index
are the US, Russia, Eurasia, EU, Japan, and OHI. In the other regions, the regional con-
sumption Gini decreases. China, the region with the most pronounced decrease, becomes
the most equal region at the end of the century in the baseline scenario (Gini around 35%
in 2020 and 20% in 2100).

Figure 5 shows the difference in the regional Gini index to the unpersistent case for
labor and capital damages proportional to the labor and capital share in income (f;, = 0.7
and fx = 0.3) and with different income elasticities of damages. Regressively distributed
damages lead to increases in the regional Gini up to 3 p.p. compared to the unpersistent
case, with important regional heterogeneity. Regions that witness the largest change in
the Gini are the most affected by climate change damages (Figure A4a). Despite being
affected by larger regional damages, India initially experiences a smaller change in the Gini
index than Africa in most income elasticity combinations and then overtakes Africa in the
second half of the century. As India is first more equal and becomes more unequal in the
second half of the century than Africa, this showcases the role of pre-existing inequality
in the regressivity of climate damages.

17



Figure 5: Difference in the regional consumption Gini index for different elasticities with
damages on capital and labor in proportion to production factor shares (fx = 0.3 and
fr=0.7),5=0.7, A=0.5.
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3.2.3 Distributional impact on the bottom quintile

We turn to the analysis of distributive outcomes at the quintile level and in particular
the impacts of channel-specific damages on consumption levels of the first quintile (or
"bottom" quintile).

Figure 6 displays the difference in consumption per capita compared to the unper-
sistent case for two groups of regions, with different combinations of labor and capital
damage shares and income elasticities. We find extreme effects in India and strong effects
in other regions. For the first group of regions (Figure 6a), consumption per capita in the
bottom quintile is projected to be around 7-13% lower at the end of the century with 25%
damages on the labor and capital channels, and around 12-20% lower if damages fall 50%
each on labor and capital. The loss in consumption per capita increases to 8-15% and
15-25% with lower values for the income elasticities of damages. For the second group of
regions, the decrease in consumption per capita is larger, with reductions of over 13% in
2100. The decrease is most pronounced with regressive channel-specific damages. In In-
dia, the reduction amounts to 100% after 2080 with income elasticities of damages of 0.5.
Consumption per capita in the first quintile plummets to zero under these scenarios in In-
dia. Capital and labor damages elasticities produce relatively symmetrical impacts, with
slightly larger effects for regressive labor damages than for regressive capital damages.

Next, Figure 7 shows the change in the net income share of the first quintile in the four
most affected regions, for different levels of labor and capital damage shares, and income
elasticities of damages of 1 or 0.75. First, when damages are strictly proportional to factor
income shares (£, = {x = 1), a larger portion of the damages falling on capital slightly
increases the income share of the first quintile (Figure 7b). This increase is because the
first quintile hardly earns any capital income (Figure A2). For &, = {x = 1, having
damages fall on the capital stock, instead of directly on output, transfers part of the
damage burden to the capital earners i.e. away from the first quintile. The effect does
not occur in Africa, where our calibration results in a slightly more unequal labor income
distribution than capital income distribution (Figure A2).

Second, for this range of elasticities, labor damages have a stronger impact on the
income share loss than capital damages. This effect can be seen by the larger income
share loss from disproportional labor damages than from disproportional capital damages
(Figure 7a and c), as well as the strongest gradient along the labor damage axis when
both capital and labor damages are distributed with an elasticity of 0.75 (Figure 7c). The
distributive impacts at the bottom of the distribution are thus more dependent on the
share and regressivity of climate damages hitting labor productivity.
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Figure 6: Difference in consumption per capita of the first quintile for different levels of
channel-specific damages and elasticities, 6 = 0.7, A = 0.5.
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Figure 7: Change in the income share of the first quintile, from pre-damage to net income
distribution, for different levels of channel-specific damages and elasticities, 2105, § = 0.7,
A=0.5.
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3.3 Social cost of carbon

We now analyze the effect of channel-specific damages and the resulting distributional
impacts on the social cost of carbon (SCC) based on quintile consumption per capita.
We evaluate the SCC with the same inequality aversion within and across generations'’
(n =~ = 2) and a rate of time preference of p = 0.015.

Figure 8 displays the SCC based on quintile consumption per capita for 2023, for
varying damage shares and different combinations of labor and capital income elasticities
of damages. We first focus on the results for damages proportional to income shares
(€x = & = 1), which are shown in Figure 8 panel a), and detailed in Table Ala. With all
damages falling directly on output, the SCC is 432 dollars per ton of carbon. If damages
fall completely on capital and labor (with a share of 50% respectively), the SCC is 1452
dollars per ton of carbon, i.e. 3.4 times larger. With a capital and labor damage share of
0, a rise from 0 to 0.5 in the labor damage share yields a 47% increase in the SCC, while
a rise to 0.5 in the capital damage share yields a 180% increase. Hence, for proportional
damages, damages hitting the capital stock have a stronger impact on the SCC than
damages hitting labor productivity.

Figure 8: The social cost of carbon for different levels of channel-specific damages, 2023.
2017 PPP USD per tC, 6 =0.7,n=v=2,p=0.015,A = 0.5
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Next, we explore the results for damages falling slightly disproportionally on the poorer
quintiles for the labor and the capital damages (£, = 0.75 and {x = 0.75) shown in
Figure 8b. The SCC amounts to more than 1710 dollars per ton of carbon if damages
fall fully on capital and labor, around 260 dollars per ton of carbon larger than with
damages distributed proportionally to shares in factor income (see Table Al). With
slightly regressive damages, the share of capital damages still has a stronger increasing
effect on the SCC than the share of labor damages. However, regressive labor damages
result in stronger increases in the SCC than regressive capital damages (comparing with
SCC with proportional damages in Figure 8 and with the same damage shares). These
results show that the income elasticity of labor damages tends to have a stronger impact
on the SCC than the income elasticity of capital damages, but that the effect on the value
of the SCC is of second order compared to the impact of the share of damages falling on

10. We relax this assumption further down.
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capital. This finding is in line with the result presented in section 3.2 on the stronger
effect of labor elasticity on inequality or on consumption of the bottom quintile.

3.3.1 Disentangling the persistence and distributive channels

Capital and labor damages yield persistent output losses and distributive effects. To in-
vestigate the contribution of these two effects to the increase in the SCC, we compute
SCCoaist, the value of the social cost of carbon for which we neutralize the redistributive
effects of channel-specific damages by distributing damages at the quintile level propor-
tionally to total quintile income. That is, quintile income shares remain unaffected by
climate change damages by assumption in the computation of SC'C,,,4;5:. Table A1b shows
the SCC,o4ist for different shares of capital and labor damages.

With a capital damage share of 0 and a labor damage share of 0.5, the SCC),4ist is 629
dollars per ton of carbon, a few dollars lower than the SCC with £, = {x = 1 (Table Ala).
On the other hand, with a labor damage share of 0 and a capital damage share of 0.5, the
SCCogist 18 a few dollars larger than the SC'C value. Thus, for proportional damages,
the output loss and growth effects of channel-specific damages tend to dominate the
within-region distributional effect on the SCC. The distributive effect of capital damages
decreases the SCC, whereas the distributive effect of labor damages increases the SCC,
which is consistent with the findings in subsection 3.2 that for damages proportional
to income shares, a larger portion of damages on capital slightly increases the income
share of the first quintile whereas it decreases with a larger portion of labor damages (see
Figure 7b).

Furthermore, with regressive damages (£, = &k = 0.75) and damage shares of 0.5
on the labor or the capital channel, the SCC (Table Alb) is larger than the SCCoaist
(Table Alc). It implies that, for regressive damage distributions, the distributive and the
growth effects of damages increase the SCC for labor and capital damages. For half of
damages on labor and half on capital, the SCC with regressive damages is more than 250
dollars higher than the SCC,,o4ist, a 17% increase.

The impact of the distributive channel on the SCC depends on the normative eval-
uation of damages and mitigation costs. Figure 9 illustrates the relationship between
the SCC and the intra-generational inequality aversion v, keeping the inter-generational
inequality aversion 7 fixed (n = 2). We fix fx = 0.15 and f; = 0.35 and look at two
scenarios: a first with damages distributed proportionally, and a second with damages
distributed regressively to income shares. In the absence of intra-generational inequality
aversion (y = 0), the two curves overlap and the distribution of damages is irrelevant. As
~ increases above zero, the SCC first experiences a decline in both scenarios. With propor-
tionately distributed damages, the SCC falls continuously. With regressively distributed
damages, the SCC decreases initially until in reaches a minimum value at ~ slightly larger
than one, then increases.

The result on the SCC under proportional damages is similar to that in Anthoff and
Emmerling 2019. The authors find that the SCC declines with increasing v. However,
they use a poor region for the normalization of the SCC, whereas we implement a "World-
fair" normalization assuming proportional distribution of mitigation costs. An increase
in v has two opposing effects!'. On the one hand, it increases the current welfare cost
of mitigating a marginal unit of emission at the expense of the poor, which tends to

11. These correspond to the effects of v on the denominator and the numerator of the SCC, see subsec-
tion 2.6.
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decrease the SCC. On the other hand, it increases the welfare costs of disproportionate
climate damages from a marginal unit of emissions, which tends to increase the SCC.
In addition, baseline global inequality falls over time while average consumption grows,
so in the baseline scenario the future world has richer poor and is more equal. When
damages fall proportionally (£, = &x = 1), an increase in 7 thus results in a larger
increase in the welfare costs of today’s mitigation costs than in the welfare costs of future
damages, so the SCC decreases with 7. When damages fall disproportionately on the
poor (& = &x = 0.75), the effect on the welfare cost of future damages'? dominates at
larger values of 7, so the SCC increases with v at these larger values.

Figure 9: The social cost of carbon for different levels of intra-generational inequality
aversion v and income elasticity of damages &7, and g, 2023.
2017 PPP USD per tC, 6 =0.7,A = 0.5,7 = 2, p = 0.015, fx = 0.15, f = 0.35.
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3.3.2 Sensitivity analysis

We test the sensitivity of the SCC to the key parameters of the models. We first focus
on the income elasticity of damages. Figure A8 in the Appendix shows the SCC for
varying damage shares and more disproportionately distributed damages than in Figure 8
(elasticities of 1 and 0.5 instead of 0.75). When the income elasticities of labor and/or
capital damages are 0.5, the SCC reaches values of more than 4700 dollars per ton of
carbon with capital and labor damages, a fourfold increase compared to the SCC with
proportionate capital and labor damages and the same factor-specific damages.

In a number of capital and labor damage combinations, damages exceed income for at
least one quintile — specifically, the poorest quintile in India, as can be seen in Figure 6b.
As a result, consumption in these quintiles has to be bounded by zero or some positive
value. Our CRRA utility function, commonly used in integrated assessment models, fea-
tures infinite marginal utility at the origin. This implies that the SCC is either unbounded

12. In this case, the reduction in global inequality over the century is lower than in the proportionate
case, see Figure 4.

24



if minimal consumption is set to zero, or is unstable and very sensitive to the boundary
value if minimal consumption is set to a positive value'®. This issue can be related to the
debate on the welfare evaluation of catastrophic outcomes sparked by Weitzman’s "dismal
theorem" (Weitzman 2009). As Millner 2013 points out, technical problems surrounding
the sensitivity of welfare computations to the behavior of the utility function at low con-
sumption levels are in fact ethical questions regarding how to socially value catastrophic
outcomes, such as a quintile losing all means of subsistence in our setting. Given that our
current framework is not equipped to address questions of population ethics, we chose not
to compute the SCC when the income share of a quintile falls to zero, and instead mark
theses cases in grey in Figure A8. The proportion of greyed labor and capital damage
combinations is large with a labor income elasticity of damages of 0.5 (Figure A8a and c),
indicating the potential for regressive labor damages to result in catastrophic outcomes
for the poorest.

Finally, Figure A9 displays the sensitivity of the social cost of carbon to the main
parameters. We modify one parameter value at a time while keeping the other parameters
at their central value. The SCC amounts to around 1000 USD /tC with our central choice
of parameter values. Figure A9 indicates a strong sensitivity of the SCC to the normative
parameters 7 (inter-temporal inequality aversion) or p (pure rate of time preference). For
low values of 7 or p, the SCC reaches more than 23000 and 3000 USD/tC, respectively,
but can also fall to around 500 USD /tC for high values of n or p. The SCC is also very
sensitive to the value of the labor damage elasticity &, as already observed in Figure AS.
We mark the range for £, as unbounded at the upper end because the income share of
the poorest quintile in India falls to the lower bound of zero with &, = 0.5. Finally, the
persistence of labor damages A and the capital and labor damage share fx and f; also
have a significant impact, albeit smaller than the parameters mentioned above. The SCC
is least sensitive to changes in the capital damage elasticity £k, the capital depreciation
0, and the intra-temporal inequality aversion 7.

4 Discussion

Our results remain conditional on a number of assumptions. In the section, we discuss
our choices of a fixed savings rate and a constant factor share.

We keep the savings rate fixed as in the original NICE' (Dennig et al. 2015). This
assumption could lead to larger impacts of factor-specific damages, as we are missing
a possible readjustment channel. Piontek et al. 2019 show that for a large one-time
shock followed by a recovery, a fixed savings rate leads to larger damages in the case
of a capital shock and to a lesser extent in the case of an output shock, and to smaller
damages in the short run followed by slightly larger damages in the long run in the case
of a labor shock!®. They also show that the savings rate responds less with a Cobb-

13. Alternatively, Kikstra et al. 2021 implement a convergence system to the boundary value to ensure
that an additional ton of carbon yields additional consumption loss even when the consumption level is
close to the boundary. With our model, the SCC become unstable and very sensitive to marginal changes
in the labor and capital damages shares. Yet another option would be to bound utility directly, which
leads to similar issues.

14. In the NICE, the fixed saving rate is derived following Golosov et al. 2014, as the optimal rate
chosen by private savers. Under a set of assumptions, the endogenous savings rate will be fixed and a
function of the capital share a and the pure rate of time preference, p.

15. They show that for a capital or output shock, the endogenous savings rate increases which hastens
the recovery, while for a labor shock, the drop in labor results in overcapitalization with respect to the
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Douglas production function. So endogenizing the savings rate while keeping an elasticity
of substitution of one would not necessarily result in a strong readjustments.

Turning next to recurring and anticipated shocks, as in our setting, Fankhauser and
Tol 2005 highlight the ambiguous effects of capital damages on an endogenous savings
rate: although savers would want to compensate for the loss of capital with an increased
savings rate, they also factor in the lower returns on capital investments. In this case,
Piontek et al. 2019 show that using a fixed instead of an endogenous savings rate results
in larger welfare and growth rate reductions for the capital channel, but has very small
effects on the output and labor channels. These findings indicate that the assumption
of a fixed savings rate in our setting could be resulting in larger and more persistent
damages from the capital channel, leading to an over-estimation of the impact of growth
effects with respect to distributional effects on the SCC. The effect is likely to be smaller
through the output and labor channel. Finally, the response of an endogenous savings
rate to simultaneous damages on labor and capital would likely be ambiguous in the short
to medium run and depend on the respective shares of output, labor and capital damages,
given that labor damages would tend to decrease the savings rate while capital damages
would tend to increase it.

The constant factor share results from applying a Cobb-Douglas production function,
a special case of the constant elasticity of substitution production function when the
elasticity of substitution is equal to one. Instead, the factor share could be interpreted
in a neo-classical fashion as reflecting relative factor prices, as in Piontek et al. 2019
and Tsigaris and Wood 2019. In this vein, a shock on the stock of either capital or
productive labor would increase the relative price of the shocked input. Depending on
the elasticity of substitution, the shock would affect the share of this factor in income
and ultimately earnings (distributive effect). In Piontek et al. 2019, the change in the
factor share of capital and productive labor compared to the case without climate change
damages is most pronounced with impacts on capital. Following from their assumption
of an elasticity of substitution of 0.5, the capital income share increases in this scenario.
With an elasticity larger than one, the capital income share would decrease with impacts
on capital.!®

To obtain these endogenous changes in the factor income share, the elasticity of sub-
stitution needs to be different from one. Piontek et al. 2019 and Tsigaris and Wood 2019
show that the elasticity of substitution also alters the ablhty of the economy to cope with
climate change damages. In Tsigaris and Wood 2019, a higher elasticity of substitution
reduces the deviation from the path without climate damages, no matter which damage
type. In Piontek et al. 2019, the impact depends on the damage type. A higher elasticity
reduces the average GDP per capita growth rate more strongly with output and capital
damages but less so with labor damages. Our findings could be mitigated or amplified,
depending on the magnitude of the aggregate and the distributive effect of an elasticity
of substitution different from one.

steady state level, leading initially to a decrease in the savings rate.

16. Another approach would be to attrlbute the net share of income to capital owners as in Tsigaris
and Wood 2019, given by (6—Y —0) % . Even with a Cobb-Douglas production function, the share of
income to capltal would then depend on the capital to income ratio.
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5 Concluding Remarks

We study how introducing channel-specific damages and composition of income affects
inequality, the well-being of the future poor, and ultimately the social cost of carbon. We
split both income and damages into a capital and a labor component, and parameterize
the proportionality of damages. As a result, the model encompasses damages that interact
with the labor, capital, and total income distributions, and are endogenously persistent.

We find that including damages that fall directly on the factors production results in
level and growth impacts on per capita output and in increased inequality, with hetero-
geneity across regions. With all damages falling on the labor and capital stocks propor-
tionally to factor shares, regional annualized growth rates fall by 0.1 to 0.3 percentage
points. The heterogeneity of damages across regions, combined with regressive impacts
within regions, leads to an increase in the global Gini with respect to the baseline case
with damages falling only on output. With half of damages falling on the capital channel
and half on the labor channel, the global Gini increases by 5% in 2050 and 15% in 2100
relative to the baseline. We show that labor damages and their distribution are key to
the outcomes of households at the bottom of the distribution.

We investigate the impact of channel-specific damages on the social cost of carbon.
We find that the social cost of carbon increases four times if damages fall half on the
capital and half on the labor channels and damages are slightly regressive, compared to
a baseline in which all damages fall directly on output.

We further disentangle the persistence and distributional effects of factor-specific dam-
ages on the social cost of carbon by having damages fall on labor and capital while keeping
the ex-post distribution of income fixed. Under our benchmark calibration with slightly
regressive damages and the same inequality aversion within and between regions, we find
that the growth channel accounts for the bulk of the effects on the SCC. With slightly
regressive damages, the SCC increases by 17% compared to the SCC with neutralized
distributional impacts.

Our results remain conditional on a number of assumptions. The basis for the distri-
bution of damages could be developed by including further insights from the empirical
literature on ongoing climate impacts. More research is needed to determine relevant pa-
rameters such as the persistence and the income elasticity of labor damages. Furthermore,
our income decomposition remains a coarse approach to the many factors determining the
distributional effects of climate policies. Future work could expand our framework of dis-
entangled damages and inequality to include more dimensions of social heterogeneity,
such as health, gender, or spatial inequalities. The role of adaptation in reducing or
exacerbating the persistence and regressivity of climate damages could also be explored.
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A Appendix

Figure A1l: Maps of input data for inequality
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Figure A2: Calibrated distributions for capital income and labor income
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Figure A3: Regional output per capita and growth with output damages only, o = 0.7
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Figure A4: Impact of channel-specific damages on overall damages and on share of
persistent damages, 6 = 0.7, A = 0.5.

Note: Panel a) shows the total damages in each regions, as a share of gross output in the
counterfactual scenario with no persistence of damages. Panel b) shows the share of total
damages which stem from the persistence of damages.
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Figure A5:  Share of total damages in gross unpersistent output (a) and Share of
persistent damages in total damages (b), for different values of the decadal depreciation
rate 0 and of the persistence of labor damages A, fx = 0.5 and f;, = 0.5.

Note: In panel b) the share of persistent damages is shown starting in 2030 instead of
2020.
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Figure A6: Global Gini index in the baseline case with all damages falling on output
(fy =1),6=0.7,A=0.5.
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Figure A7: Regional Gini index in the baseline case with all damages falling on output
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Figure A8: The social cost of carbon based on quintile CPC welfare function for different
levels of channel-specific damages and combinations of elasticities (§ € (0.5,1)), 2023,
2017 PPP USD, 6 = 0.7, =v=2,p=0.015,A = 0.5
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Note: The grey values indicate the combinations of capital and labor damages shares for
which we do not compute the SCC because consumption drops to the boundary value of

zero for a least one quintile.
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Figure A9: Social cost of carbon based on quintile CPC welfare function for different
levels of main parameters, holding all other parameters fixed at their central value, 2023.
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Note: The SCC corresponding to the central parameter values (black) is marked by the
vertical line. A blue (red) parameter value correspond to the lower (higher) SCC value.
The x-axis is split at around 4000USD /tC.

With xi;, = 0.5 the income share of the poorest quintile in India reaches the boundary of

Zero.
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Table A1: Social cost of carbon with quintile consumption per capita, for different channel-
specific impacts (2023) in 2017 USD per tC, 6 = 0.7, A = 0.5, p = 0.015, n = vy = 2.

a)
SCC, k=& =1

fe\fr O 0.5

0 432 634
0.5 1212 1452

b)
SCC, €5 = & = 0.75
fe\fr 0 05
0 432 744

0.5 1313 1710

SCCnodist
fi\fr 0 05
0 432 629

0.5 1223 1458

Note: SCC' is the social cost of carbon from quintile consumption per capita, and
SCChodist is the social cost of carbon from quintile consumption per capita with dam-
ages proportional to total income by assumption (distributional impact of channel-specific
damages neutralized).
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